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Abstract
We present an improved lattice Boltzmann model of multi-component flow
which permits practical, hydrodynamic modelling of multiple immiscible
fluids. The model is robust and significantly reduces the interface anisotropy
and micro-currents, which are artefacts observed in many schemes. Our
new scheme is used on a particular regime of blood flow: that of the
veinule mesoscale, where it is necessary to resolve significant numbers of
deformable, interacting cells, which we model as incompressible liquid drops.
We demonstrate the model’s ability to recover the complex flow phenomena
typical of the veinule scale.

PACS numbers: 02.70.−c, 47.11.+j

1. Introduction

Over the last decade, a range of lattice Boltzmann (lB) methods have been developed as
mesoscopic models of isotropic [1] and anisotropic [2] fluids. The lB method shows particular
promise when applied to complex flow at low Reynolds number [3] and especially to multi-
fluid systems. A range of techniques have been developed to model fluid interfaces (e.g.,
[4–6]), with perhaps the Shan–Chen approach [7] being the most popular. More details can be
found in reviews by Benzi et al [8] and Chen et al [9]. It is our objective here to demonstrate
that a multi-component lB provides a basis for one particular model of veinule-scale flows.
In section 2 we outline this ‘explicit’ model of mesoscale blood flow, in which we resolve
deformable, advected blood cells as incompressible drops of many immiscible liquids.

It should be noted that even in mesoscale hydrodynamics the boundary between two
immiscible fluids should have no structure or thickness. Surface tension is activated in lB by a
number of methods which are microscopically physical. As a result, the emergent continuum
interface suffers from unwanted artefacts: (i) small but spurious velocities, or micro-currents,
and (ii) a finite thickness.

Key lB interface models are able to capture the kinematics of phase separation [5].
However, where hydrodynamics alone defines the problem narrow interfaces are desirable,
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simply from the point of view of computational resources. This is especially true when
the interfaces are intimate and the geometry is complex. Here we wish to simulate many
immiscible, interacting drops. Computational considerations restrict the size of each. For
hydrodynamic behaviour, graded interfaces of (say) width 6 lattice units on drops practically
restricted to radius 20 lattice units are unphysical. Fortunately, in the hydrodynamic regime,
simpler lB interface models [4] which produce a sharp interface (typically 2–3 lattice units)
are as valid as any other lB method [10]. The basic technique of Gunstensen and Rothmann
[4] is, moreover, the method most readily amenable to the algorithmic developments designed
to accommodate mutually immiscible species (section 3.3).

To be precise, we base the work reported here on a version [6] of the interfacial model
due originally to Gunstensen and Rothmann [4]. The use of a Gunstensen/Rothmann-type lB
model is further justified by its ability to sustain a significant difference in kinematic viscosity
between the separated liquids at low Re. The basic method is described in section 3.1
and refined in section 3.2, reducing both the anisotropy of the interface and the intensity of
the micro-currents. The generalization of this model to any number of mutually immiscible
species is then presented in section 3.3.

In section 4 we present quantitative results which demonstrate the improvements in the
surface tension algorithm and results which demonstrate its ability to realize veinule-scale
blood flow.

We present our conclusions in section 5.

2. Model for mesoscale blood flow

Blood flow has been studied for many years. The majority of studies deal with visco-elastic
flow in vessels with a diameter more than two orders of magnitude greater than that of a red
blood cell (RBC). Here blood is considered to be a homogeneous, non-Newtonian liquid (see
Quarteroni [12]). There is also work on microscopic flows, where single cells are modelled
explicitly (see below). In this case, the flow is recovered from low Re multi-component
hydrodynamics in which the interface-mediated physics is of primary importance. Certain
mesoscale calculations have ‘resolved’ cells by assuming that blood components advect along
the streamlines of the corresponding undisturbed flow. Whilst limiting, this assumption is
probably reasonable for small, rigid cells. However, when cells are of a size comparable with
the vessel, explicit deformations and interactions cannot be neglected. A full understanding
of such processes requires explicit modelling of a high volume fraction of deformable, and
interacting, particles [11].

Microcirculation flows, in small veins or veinules, are characterized by significant
numbers of strongly interacting cells, which require explicit resolution. Capillary length
scales have flow dominated by plasma-advected RBCs and the crucial properties of constant
RBC surface area and preferred membrane curvature are undoubtedly of central importance.
But at the veinule scale there are a range of important phenomena, in which explicit models
of deformable cells should be used, and where one expects membrane curvature to be less
important than the volume exclusion effects associated with high cell numbers. We briefly
discuss some examples of such situations:

(1) In veinules, white blood cells (WBCs) can concentrate near the walls. Margination can
promote WBC function. Margination is affected by flow rate, WBC to RBC ratio and
haematocrit, the latter being the percentage volume of solids in plasma, typically 37%.
The mechanism which drives the RBC to migrate towards the centre of the vessel may be
RBC aggregation, and associated volume exclusion effects, or it may also be their greater
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deformability. Calculations have considered single solid cells but there are no results in
the interface-dominated regime treating significant numbers of deformable particles.

(2) Empirically, haematocrit is found to be the principal determinant of blood viscosity.
The investigation of haematocrit dependence of viscosity becomes possible only with an
explicit model.

(3) Margination near a microcirculation junction causes plasma-rich blood in any side vessel
[13]. This effect, known as plasma skimming, clearly requires explicit resolution of blood
components and flow geometry.

Clearly, it would be valuable to have a model capable of resolving flow constitution,
geometry, differential deformability (RBC versus WBC) and particle size distributions. So,
for the type of applications outlined above, we propose an incompressible liquid drop model.
Such a model must automatically capture the constraint of constant cell volume and allow for
differential deformability. The constraint of constant cell surface area is assumed to be less
important. In summary, we represent veinule-scale blood as a heterogeneous liquid consisting
of a wetting, ambient plasma component and a number of intimate, approximately solid
and mutually immiscible drops. The drops may have different sizes, viscosities and surface
tensions for different applications.

Despite success over a range of applications, conventional computational fluid dynamics
(CFD) is unsuited to model such flows as we propose here. However, lB offers a practical
vehicle for our drop model of the veinule microcirculation. The multi-component lattice
Boltzmann (lB) method has been used for flows containing separated liquids. However, to
simulate the situations outlined in (1)–(3) above, one must have a means of interrupting
coalescence/evaporation between drops. For, note, RBCs accrete at low shear into ‘rouleaux’
but certainly do not amalgamate like drops of oil in water. Therefore, to adapt lB for the
veinule microcirculation it is necessary to devise a practical algorithm with controlled liquid
drop coalescence. This is discussed in section 3.

To demonstrate its worth in situations such as (1)–(3), our model must work sensibly
with many suspended drops, all of a size comparable to that of the veinule, all showing
deformation. Using the N-phase lB (section 3), we simulate, in section 4, a dense suspension
of relatively viscous, neutrally buoyant deformable cells. The cells are assumed to be advecting
through an asymmetrically expanding duct at a Reynolds number—a situation representative
of physiological flows. Crucially, the balance between inertial and surface tension forces
(capillarity or Taylor number) is controlled so as to allow clear deformation in all parts of the
flow.

3. Development of the lB model

We outline an lB model of multi-component flow for �2 mutually immiscible species,
designed to provide a vehicle for the modelling requirements outlined in section 2. For
the reasons discussed in section 1, our liquid–liquid interface is generated by a version of the
Gunstensen and Rothmann lB algorithm [4]. We further demonstrate that this interface has,
for hydrodynamic applications, properties matching those of more popular lB interfaces [7].

As a basis we adopt the two-dimensional, 9-velocity LBGK model (denoted by D2Q9,
with the Q = 9 velocities depicted in figure 1), which has a single scalar collision parameter.
This was pioneered by Qian and d’Humières [18] and analysed in detail by Hou et al [15].
The lB model fluid is weakly compressible but for the envisaged range of Re, compressibility
errors should be very small.
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Figure 1. The D2Q9 lattice basis or velocity set used for our basic single relaxation time LBGK
model.

3.1. An lB interface

We first consider two immiscible liquids. Our model currently applies to fluids with the same
physical density. For small Re, the effect of gravity on differential drop buoyancy may be
approximated through a body force, an approach which is exact only at Re = 0. However,
buoyancy effects will not be of primary importance in the target blood flow application though
they may be significant in other adaptations of our model. Hence we consider body forces in
this subsection.

Vectors of the lattice basis are denoted as ci with indexing given in figure 1. The collision,
propagation and forcing of a D2Q9 LBGK algorithm is written as

fi(r + ciδt , t + δt ) = fi(r, t) +
1

τ

(
f

(0)
i (ρ, ρv, t) − fi(r, t)

)
+ Fi (1)

where δt represents the time step, τ controls the molecular viscosity of the lattice fluid through

ν =
(

2τ − 1

6

)
(2)

(units of the time step, δt ) and the constant, Fi , represents a spatially uniform body force
density which includes (i) parameter g, which differs for the two fluids and approximates
the effects of buoyancy [17], and (ii) a term which represents an applied constant pressure
gradient, G. The overall forcing, Fi , is thus

Fi = 3Gtpρcix + 3gtpρciy (3)

where the weights, tp, are defined below.
The macroscopic density and momenta of the two fluids are obtained from the moments

ρ =
∑

i

fi ρv =
∑

i

fici (4)

and the equilibrium distribution function, f
(0)
i , is

f
(0)
i (ρ, v) = tpρ

[
1 +

v · ci

c2
s

− |v|2
2c2

s

+
(v · ci )

2

2c4
s

]
(5)

with weights tp = 4/9, 1/9, 1/36 for link index i = 0, i even, i odd, respectively (labelling
of figure 1). cs = 1/

√
3 is the velocity of sound for the D2Q9 model. The form of the

equilibrium distribution function, (5), ensures that

ρ =
∑

i

f
(0)
i ρv =

∑
i

f
(0)
i ci (6)
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and also recovers the non-viscous components of the momentum–flux tensor through

�
(0)
αβ =

∑
i

f
(0)
i ciαciβ = 1

3
ρδαβ + ρvαvβ. (7)

For a more detailed derivation of this basic algorithm see Zou et al [15].
Gunstensen and Rothmann [4] were the first to introduce multi-component behaviour

into lB through the action of new rules added to a model similar to that outlined above.
These new rules give a spontaneous interface between immiscible, colour-differentiated
fluids, represented by momentum densities Ri(r, t) and Bi(r, t), as outlined in the next few
paragraphs.

Ri(r, t) and Bi(r, t) are summed at each lattice node to define a conserved red density
ρR(r, t) and a conserved blue density ρB(r, t), with ρ(r, t) = ρB(r, t) + ρB(r, t). Ri(r, t) and
Bi(r, t) evolve as follows.

The overall, colour-blind, momentum density,

fi(r, t) = Ri(r, t) + Bi(r, t) (8)

is used to calculate an overall density and velocity. These quantities are interpreted as the total
density and velocity of the red and blue fluids at position r, time t. A colour-blind equilibrium
f

(0)
i is then defined using equation (5). Collision of the multi-component fluid is performed in

three steps: (i) a colour-blind collision using equations (5) and (1), (ii) a perturbation which
introduces interfacial tension and (iii) a re-allocation of colour (re-colouring) which introduces
component segregation.

Surface tension is introduced by inserting a small (nominally O
(
δ2
t

)
[6]) mass and

momentum conserving perturbation, �fi , to the post-collision fi(r, t) prior to re-colouring:

�fi(r, t) = σC(r, t) cos(2(θf (r) − θi)). (9)

Here, the parameter σ controls the strength of the effective surface tension, angle θi is the
angular orientation of lattice link i (figure 1) and θf (r, t) is the direction of the colour gradient:

f(r, t) =
∑
ij

(Rj (r + ci , t) − Bj(r + ci , t))ci (10)

which is taken as an approximation to an interface normal at the boundaries between the two
fluids. C(r, t) is a concentration factor:

C(r, t) = 1 −
∣∣∣∣ρR(r, t) − ρB(r, t)
ρR(r, t) + ρB(r, t)

∣∣∣∣ (11)

which limits activation of surface tension to multi-coloured nodes [6].
Colour is de-mixed by re-allocating colour densities ρR(r, t) and ρB(r, t) over the post-

collision ‘receptacle’ fi(r, t) so as to maximize the work done by colour flux:

q(r, t) =
∑

i

(Ri(r, t) − Bi(r, t))ci (12)

against the colour gradient (10).
Different relaxation parameters τ can be applied to the separated liquids, to give them

different kinematic viscosities. In the mixing/segregating region an effective relaxation
parameter τeff is used, which, through identity (2), gives the appropriate mean viscosity
for the fluids mixing at the interface:

νeff = 1

6
(2τeff − 1) =

(
ρR

ρR + ρB

)
νR +

(
ρB

ρR + ρB

)
νB. (13)
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Segregation and surface tension is thus produced in any region of the lattice where colours
mix. Such a region corresponds to a fluid–fluid interface, with essentially correct continuum
length scale properties [6]. Finally, it is important, for present applications, to note that the
interfacial region is relatively narrow.

3.2. An lB interface with reduced micro-currents

It is possible to improve the properties of the emergent interface described in section 3.1. For
given values of σ and τ , macroscopic interfacial tension in the ‘diphasic’ model (section 3.1)
can be calculated for two interface orientations [16]. Surface tension for an lB interface
parallel to the short link direction (even i, figure 1) is, to first order in product στ [16],

�s = 4στ

3
. (14)

For an interface parallel to a long link direction (odd i, figure 1), we have a surface tension

�l = 4στ√
2

. (15)

This difference holds a clue to the minimization of the micro-current.
The form of the perturbation we choose in equation (9) allows one to set surface tensions

�s and �l independently. That is, perturbations applied to the odd i and even i fi(r, t), will
separately control �l and �s . This may be seen, for example, by considering an interface
oriented parallel to the long links (odd i, figure 1). The value of perturbation (9), for all even
i value fi(r, t), is zero. Hence, all even i value fi(r, t) are ignorable when considering �l .
An equivalent argument follows for �s . Accordingly, we set �s and �l independently, using
different perturbation parameters, σ and λσ , to perturb even i and odd i value fi(r, t). By
adjusting λ, the closed interface bounding a red drop can be characterized by a single, uniform
macroscopic surface tension. Dividing equations (14) and (15), we can estimate a value of λ

to first order in the product στ [16]:

λ = 3√
2

≈ 2.15. (16)

Ensuring that interfacial tension is uniform has other beneficial effects besides making
a static drop more isotropic (circular). The interfacial micro-current field associated with
a drop placed centrally on a lattice, bounded with no-slip walls, represents a solution of
the Navier–Stokes equations with boundary conditions determined by the walls and by the
velocities induced near to the interface by the segregating flux of the interfacial perturbation.
The qualitative features of the micro-current flow field may be predicted by considering the
directions in which the segregating flux has its maxima and minima. Hence, by smoothing
the variation of this quantity with angular position, we also smooth the imbalance responsible
for driving a micro-current. Accordingly, adjusting the ratio 16 should improve drop isotropy
and minimize the micro-current activity, as measured by the velocity residual:

m =
∑

r

v(r, t). (17)

3.3. N immiscible fluids in lB: coalescence and wetting

Sections 3.1 and 3.2 introduce our lB model of a binary liquid. Here we generalize that model
to a mixture of N immiscible liquids which must not coalesce or evaporate and which must
have controlled wetting properties.
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Hence, there are certain essential requirements in the N-colour extension. To regulate
evaporation masses of individual drops each need to be conserved. Over 106 lattice updates,
our interface algorithm in section 3.2 conserved the mass of a drop to better than 2.0×10−3%.
Interruption of coalescence is just as crucial to model blood cells. The latter is quantified, for
this algorithm, below. To avoid the need to consider cells’ interaction with the veinule wall,
we choose to prevent all drops from wetting the solid boundaries.

Our generalization to N immiscible components assigns each fluid a ‘colour’ superscript,
α = 0, 1, 2, 3, . . . , (N − 1). Fluids with different values of α can have different properties,
e.g., collision parameters, τα . Now, for N different species, multi-component lB quickly
demands unviable amounts of computer storage, as N increases. But for relatively small,
non-evaporating, ‘sharp’, drops, these arrays for N primary quantities f α

i (r, t) will be very
sparse. Moreover, a natural question arises around the validity of attempting to represent, on
lattice nodes with Q links or velocities (see figure 1), more than Q different colours or species.

To address storage, we track only NQ (<Q � N) dominant species at any node. Note
also that the particular NQ colours, or immiscible components, vary between nodes. We
are thus considering colour difference, as opposed to absolute colour, which is the source of
the principal reduction in the requisite storage. The sharp interfaces from our Gunstensen-type
interface method mean minimal mixing and a reduction in the number of different colours
found on a node. In practice we take NQ = 5. This value is found to be adequate for even
the most intimate mono-disperse multi-component flows. But, note, this choice reflects the
geometry and number of components (colours/drops) in our particular application.

Before further detailing our method, we acknowledge that, to guide species segregation,
a lattice map of absolute colour is needed. However, for such a map, sufficient information
can be stored in a four-dimensional array of integer type, with a subscript set {x, y, i, NQ}
to identify, for lattice position {x, y}, direction i, the colours (�NQ in number) present
their integer superscript, α. By recording NQ species at each node, the dominant-type real
storage requirements, on the primary quantity f α

i (r, t), for a total of N0 drops (or immiscible
components), is reduced by a factor NQ/N0, in fact to levels comparable with the diphasic
model (below).

Controlling coalescence amounts to dealing consistently with all possible mixed node
states, with a generalized perturbing and re-colouring processes, designed to eliminate mixing
between all species. This requirement may still be stated as a need to maximize the work done
by a generalized colour flux against a generalized colour gradient.

The diphasic colour gradient (section 3.1) must be generalized. We continue to assume
that colour gradient defines an interface normal [20], and generalize it, based upon section 3.1.
We define an interfacial colour gradient between any pair of de-mixing immiscible components,
denoted by α and β, relative to the vector

Iαβ(r) =
∑

i

∑
j

(
f α

j (r + ci ) − f
β

j (r + ci )
)
ci (18)

which, we emphasize again, is assumed to be normal to the local (α, β) interface. This colour
gradient is used to perturb the ‘colour-blind’, total:

fi(r, t) =
NQ−1∑
α=0

f α
i (r, t)

with a surface tension inducing perturbation. Note that this summation is on α: the
corresponding summation of i gives the total density of fluid α on the node:

ρα(r, t) =
Q∑

i=0

f α
i (r, t).
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For the interface between components α and β we use a generalized perturbation after
section 9:

�f
αβ

i (r, t) = σαβCαβ(r, t) cos(2(θI (r) − θi)) (19)

in which there is no summation on repeated subscripts, σαβ is a surface tension parameter for
the αβ interface, θI is the polar angle of the field in equation (18) and

Cαβ(r, t) = 1 −
∣∣∣∣ρα(r, t) − ρβ(r, t)
ρα(r, t) + ρβ(r, t)

∣∣∣∣ (20)

is the concentration factor for the (α, β) fluid pair, after equation (11). For a D2Q9 lattice,
σαβ is modulated by the factor λ (section 3.1), so that σαβ becomes

σ i
αβ =

{
λσαβ i even
σαβ i odd.

The perturbations described in equation (19) are superposed for each of the �2PQ fluid pairs
(α, β) on a mixed node. This yields an effective perturbation to the colour-blind fi(r, t):

�fi(r, t) =
∑
(αβ)

�f
αβ

i (r, t)

in which the summation is taken over all pairs (α, β) of fluids present (see below).
We now define an ‘average’ colour gradient which points towards component α and away

from the total of all other components present at the node at r:

f α(r) =
∑

i

∑
j


f α

j (r + ci ) −
∑
β �=α

f
β

j (r + ci )


 ci

=
∑

i

∑
j

[
2f α

j (r + ci ) − fj (r + ci )
]
ci . (21)

The same calculation is repeated for each fluid component present at the node, position r. The
appropriate colour gradient fα(r) (equation (21)) is used to re-colour for component α within
each node in the same way as for a binary fluid.

The process defined above opposes the inter-diffusion of all different components. Note
that to calculate the colour gradient (21) requires knowledge of the absolute colour, not just
the relative amounts of the different colours present in a local environment. We also note that
the sum on α of these individual fields is a measure of the local gradient in the total fluid
density and is therefore zero only in a uniform fluid.

In order to achieve full colour separation, the order of the re-allocation of more than
two colours to receptacle fi is significant. Different ordering in the re-colouring process
can clearly result in small differences in the post-collision post-segregated state. Careful
observation shows that these differences are small but not without consequence. They are, for
example, probably linked to the residual micro-current activity. In order to produce optimum
segregation (sharp interface), the minority species at a node is given priority allocation to its
favoured direction. Failure to adopt this scheme results in a relatively large loss of information
about the location of minority species, resulting in increased drop evaporation.

Target flow applications are, by intention, heavily interface dominated. Recall, for
our effectively mono-disperse systems here, a maximum of five drops in proximity were
allowed (again, simple packing considerations mean this value will increase with increasing
polydispersity). Five immiscible drops or de-mixing fluids lead to 2P5 = 10 possible local
interfaces. This factor ‘amplifies’ the computational overhead attending the increase in the
total length of interface as N (drop number) increases, as assessed in table 1 (see below).
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Table 1. The dependence of the memory of the algorithm and execution speed (times) upon N,
number of immiscible drops (fluids), based upon a 100 lattice updates on a 200 × 200 square
lattice. The drop size varies (decreases) as N increases.

N 2 10 100 1000
Time (min) 7 8 9 11
Memory (Mb) 64 64 64 64

Table 2. The dependence of the memory of the algorithm and execution speed (times) upon N,
number of immiscible drops (fluids), based upon a 100 lattice updates on a 200 × 200 square
lattice. The drop size remains fixed as N increases, hence the constrained range of parameter N.

N = NQ 2 3 4 5 6 7 8 9
Time (min) 1.1 1.5 1.8 2.1 2.3 2.6 3.0 3.4
Memory (Mb) 10 12 14 16 18 20 22 25

We now proceed to consider the wetting properties of our algorithm. To bound a mixture
of suspended drops in an internal flow we must consider the relative wetting properties of the
liquids, and we now describe a means of controlling continuum-scale inter-component and
wall-wetting properties.

Consider a mixture of fluids close to a boundary. Differential wetting is achieved using
a perturbation process similar to that used for liquid–liquid wetting. Accordingly, the wall-
wetting perturbation for a fluid α is taken to be

�f α
i (r, t) = ρα(r) cos(2(θw(r) − θi))σα|wall (22)

where ρα(r) is the wall-nodal density of the fluid α, θw(r) is the orientation of of the wall
normal and σα|wall is a parameter controlling the ‘wetting surface tension’ of the fluid α. By
setting different values of σα|wall, the different components present at a boundary may each
be differently inclined to wet. Different components therefore compete to wet the boundary,
which is the essence of the underlying physical process. The perturbations described in
equation (22) are repeated (superposed) for each fluid α on a mixed wall node.

Results of wall-wetting simulations are presented in section 4. These show the change
in shape of a drop at a wall as a result of variation in the wetting parameter. The wall
perturbation process is found correctly to control the wetting at the boundary, and this leads
to a wide range of possible applications. For the present, we wish simply to ensure that the
‘plasma’ preferentially wets the boundary, thereby denying adhesion of the red blood cell
drops and maintaining an explicitly resolved layer of plasma at the boundary. Thin films
of incompressible liquid at low Re (the ‘lubrication regime’) can sustain large hydrostatic
pressures. An explicitly resolved layer of plasma also avoids the need to postulate the sub-
lattice ‘lubrication force’ associated with narrow contacts in the lubrication regime. We note
that white-cell adhesion could also be easily incorporated using the methods just described.

Tables 1 and 2 summarize the performance of our algorithm executed on a Silicon Graphics
Origin 300 500 MHz IP35 (CPU: MIPS R14000) workstation. Table 1 shows the dependence
of the memory requirements of the algorithm and execution time upon N, number of immiscible
drops (fluids), based upon a 100 lattice updates on a 200 × 200 lattice, with the drop size
decreasing as N increases, note. The information in table 1, which assumes a maximum
of five colours or immiscible components per node for all values of N, emphasizes that
the total memory requirement is tied to the choice of NQ (=5, recall), number of ‘recognized
components’ and therefore it does not scale with N. The execution time increases in proportion
to the total length of all interfaces, although this is not apparent in the data of table 1, because
of the particular way that the drop size is reduced as N is increased, (to assist packing).
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Figure 2. Results performed on a 150 × 150 lattice with drops initialized to radius 40 lattice units.
The images a(i), b(i) and c(i) show the shape of the interface for the different values of λ: λ = 1.0
(too small), λ = 2.1 (close to optimum) and λ = 4.0 (too big). The corresponding plots a(ii), b(ii)
and c(ii) show drop radius as a function of angular position in the interface. The optimum value of
the parameter λ occurs close to the predicted value (2.15) obtained from equation (16).

Table 2 shows the dependence of the memory of the algorithm and execution time upon
N = NQ, based upon a 100 lattice updates on a smaller 100 × 100 lattice, now with the drop
size fixed as N increases over a smaller range. Unsurprisingly, given these conditions, the
execution times and memory requirements in table 2 both increase in proportion to N = NQ.

4. Validation and application of the lB model

In this section we first describe the validation of the improved lB interface followed by
simulation results typical of the veinule-scale microcirculation. In respect of the latter, we
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consider (i) single advecting, deforming drops, (ii) control of coalescence and (iii) many
immiscible, deformable drops.

Note that the contact angle for three components α, β and γ in contact may be compared
with its value from Young’s equation:

cos(θe) = γαγ

γαβ + γβγ

(23)

in which γαβ is the macroscopic αβ surface tension, proportional to σαβ .

4.1. Drop interface

Simulations reported here refer to a lattice fluid nominally at rest, initialized to an equilibrium
state of uniform density ρ = 1.80 on a 150 × 150 lattice with a drop of initial radius 40 lattice
units. Evolution was performed to steady state. The interface and lattice collision parameters
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were 0.0075 and 1.7, respectively. Micro-current activity and isotropy were assessed at each
time step by the scalar lattice summation of the velocity residual (equation (17)). This quantity
was used to identify the steady state and the results were obtained for a wide range of ratio
parameter λ.

Drop isotropy is measured in graphs of the drop radius (distance from the centre of mass
to multi-coloured sites in the interface) as a function of angular position. Figures 2a(i), b(i)
and c(i) depict the position of the interface for λ = 1.0 (too small), λ = 2.1 (close to optimum)
and λ = 4.0 (too big) and the corresponding plots a(ii), b(ii) and c(ii) represent drop radius
with angular position. The increased range and resolution of λ shown in figure 3 confirms the
trend. Figure 3 shows two sets of data, each normalized to its value at parameter λ = 2.15.
The first set (circles) shows the standard deviation of the drop radius, the second (triangles)
shows the micro-current activity measured by the parameter m (equation (17)). Both series
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Figure 3. The standard deviation of a drop radius (circles) normalized to its value at parameter
λ = 2.15 and the micro-current activity m (triangles) again normalized to their value at λ = 2.15.
All data correspond to a value of σ = 7.5 × 10−3 and LBGK collision parameter 1/τ = 1.7. Note
the coincident and pronounced minimum at the expected value, λ ≈ 2.15, in both series of data.

Figure 4. Instantaneous drop configurations for a drop entrained in flow past an asymmetric
expansion, superimposed over shows streamlines from the corresponding undisrupted (single
phase) flow. Note that the lowest resolved streamline in figure 3, immediately to the left of the step
corresponds to a recirculation.

of data show a pronounced minimum at the expected value, λ = 2.15. The optimum circular
shape occurs when parameter λ is close to the value predicted from equation (16) and in this
case anisotropy in the radius cannot be resolved.

Careful measurements around λ = 2.1, based upon the standard deviation of the radius,
reveal weak dependence of optimum λ upon the value of LBGK relaxation parameter τ . This
is understandable, since the theory behind equation (16) is only first order in product τσ [16].

4.2. Deforming, advecting drop

For definiteness, we take an asymmetrically expanding duct. A number of detailed,
physiologically relevant questions arise around this geometry (figure 4), e.g., for given Re,
what size of drop can become trapped in any feature corresponding to a primary vortex of the
undisturbed flow? Our aim here is to demonstrate the potential of our lB simulation in such
problems.

In the results presented here, the effects of gravity are ignored. Although the effects
of gravity are not important in most mesoscale blood flow applications, it is still possible
to approximate the influence of gravity by the use of different constants g in the evolution
(equations (1) and (3)). Flow was forced by a constant body force, G (equation (3)), applied
uniformly to both fluids. The step was simulated as adjacent front-facing and back-facing steps
in a channel with periodic boundary conditions in the horizontal direction. Figure 4 shows
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results only from the back-facing region, which might be taken to represent the occlusion of
a vessel caused by the accumulation of plaques at its wall. Single drops were entrained by an
effective pressure gradient. The expansion has a ratio of step height to upstream throat of 1/3
and the narrow part of the channel was resolved to 40 lattice units (lu), which are defined to
be the shortest inter-node distance. The Reynolds number for the corresponding undisturbed
flow was set at a physiologically representative, Re = 73.

We now consider drop deformation in more detail. Red blood cells change shape in
response to local flow conditions and, in turn, deformation affects the physiological function
of the red cells. Moreover, at a concentration of 50% by volume, a suspension of solid spheres
cannot flow, whereas blood is fluid even at 98% concentration by volume. Clearly it is essential
to capture deformation. To assist, we appeal to a lattice capillarity or Taylor number:

Ca = γ νRρ

�
(24)

where γ is the local shear rate, R is the undeformed drop radius and ν is the kinematic viscosity
of the liquid of the drops. Figure 4 superimposes snapshots of a reasonably deformable drop
over the streamlines of the corresponding undisturbed flow. The Taylor number was set at
Ca = 0.04 and the initial radius 7 lu. This choice of Ca was made in order to produce a drop
deformation similar to that photographed for a red blood cell deforming in a hydrodynamic
focusing experiment [19].

By adjusting the collision parameter of the drop fluid in the range 0.4 < τ < 1.99, it
is possible to obtain a drop/fluid viscosity ratio up to approximately 300. However, for all
our results, this viscosity ratio is set to be 7, which is approximately the correct ratio for the
viscosity of the internal fluid of red blood cells by comparison with the surrounding plasma.
These arguments clearly ignore the effects of the elastic properties of the cell membrane which
we have assumed to be less important in the class of flows we consider. Note also that the
lowest value of resolved streamline in figure 4 is actually recirculating.

4.3. Many deforming, advecting drops: blood flow

In high volume fraction flows, drops can come close to the simulation boundary. To avoid
the need to postulate sub-lattice lubrication forces, we always encourage an explicit layer
of plasma fluid to remain between drops and the boundary. We need to ensure preferential
wetting of the boundary by the plasma fluid and this requires control over contact angle.
Before proceeding to consider applications and results for veinule-scale simulation, we must
therefore verify the wetting behaviour of our lB algorithm.

To demonstrate our liquid–liquid wetting algorithm (section 3.3), figure 5 shows typical
results obtained for three static, immiscible fluids on a lattice, dimension 150 × 50, reciprocal
collision parameter 1/τ = 1.7. This data was obtained by assigning a range of different values
to the respective surface tensions. A circular arc has been fitted through the set of mixed nodal
densities to obtain the interface fit and hence θe. Each of the interfacial points in figure 5 lies
<10th lu from the fitted circle. Results in figure 5 are in excellent agreement with
the expected values; the difference between the measured and expected contact angles
(equation (23)) evaluates to <2%.

In respect of liquid-boundary wetting, simulation results achieve the similar degree of
agreement. However, the shapes of the drops at a solid surface (figures 6) are not so circular;
the fit shows an average of ≈0.5 lu between the fit and the interpolated interface. This
discrepancy is due to the cumulative effect of the micro-current at the simulation walls, which
drives very small circulations sufficient to disturb the drops in a rest simulation. However,
these effects are small and normally overwhelmed by flow.
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Figure 5. Results obtained for three immiscible fluids at three different relative surface tensions,
chosen so as to vary the resulting contact angle. Data shown derive from a simulation of 105 time
steps, on a lattice, dimension 150 × 50, again with collision parameter 1/τ = 1.7 (all fluids).
Measured contact angle values may be compared with the theoretical values given by Young’s
equation.

Figure 6. Results obtained for a fluid in contact with a boundary, with increasing wall wetting in
‘reading order’. The collision operator in use was again 1/τ = 1.7 and the assumed steady state
at 105 steps. System size was 100 × 80.

The results shown in figure 7 represent the flow which our model is aiming to recover.
Sixty incompressible, neutrally buoyant, mutually immiscible drops of identical internal
viscosity and surface tension were initialized on a lattice of size 220 × 50 and forced by
a uniform pressure gradient. This internal geometry is broadly characteristic of the veinule
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Figure 7. Incompressible, neutrally buoyant, identical, immiscible drops, initialized on a lattice,
220 × 50, and forced by a uniform pressure gradient (body force), in an internal geometry
characteristic of the veinule microcirculation (here Re = 20). Periodic boundary conditions
were in force left to right in this simulation. The figure shows a developing time sequence of drops,
in most cases showing only the interface of each drop with the surrounding fluid; however, a cluster
of drops has been completely shaded in black so as to allow the reader to track their respective
positions. In addition, a trapped drop jamming has been highlighted.

microcirculation. Periodic boundary conditions were applied left to right. The ambient plasma
fluid was set strongly to wet the boundary wall. Thus, an explicit layer of fluid was maintained
between all drops and the boundary. This is a necessary precaution where no lubrication forces
have been postulated, or where one wishes to avoid questions of cellular interactions at the
wall. In four time frames we illustrate the jamming of one particular deforming–advecting drop
(shaded grey) and the dispersion of an initially compact group (shaded black). Throughout,
the role of deformation in the drops/cells is clear.

5. Conclusions

The study of some complex flows requires the explicit representation of a high density of
suspended, deformable particles. The simple, tractable lattice Bhatnagar–Gross–Krook (lB)
interface model advanced here is a clear improvement over preceding models, built on the
basic Gunstensen algorithm [4] (figures 2 and 3). It has application to situations where it
is necessary to recover only hydrodynamics of separated components. The micro-current
reduction from this algorithm alone is important in opening up low Re, high Ca (microfluidic
or surface tension dominated) flows to lB, for it is in this regime that the lB micro-current field
is comparable to that of the simulated flow.

In veinule blood flow, inertial forces are more important and Ca is larger. Our application,
in figure 4, demonstrates the considerable potential for modelling the advection of deformable
particles. In figure 4 the drop appears to deform considerably. As an aside it follows, quite
closely, a streamline of the corresponding undisturbed flow, but with considerable deformation.
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That no corresponding statement seems possible when considering multiple drops, at high
concentration (figure 7), is unsurprising.

With the addition of control over coalescence (evaporation) (section 3.3), our lB method
also has applications to any flow containing deformable particles which can be modelled as
drops, the results of figures 5 and 6, culminating in figure 7, demonstrate its ability to provide
explicit information on the location of the drops and the interdependence of their motions.

Figure 7 strongly supports our controlled-coalescence lB model as the vehicle of that
representation of the ‘veinule’ mesoscale of blood flow in which a high volume fraction
of strongly interacting, advecting and deforming cells, confined by vessels of diameter
comparable to the cell diameter, are modelled as non-coalescing liquid drops (section 2). The
results of simulations show real potential. In figure 7 it is tempting to identify (a) ‘plug flow’
of drops, giving plasma-rich regions, with positive implications for the modelling of plasma
skimming, (b) trapping in the primary recirculation and notably (c) the role of deformation.
All these features are promising for the applications outlined in section 2. We stress that
to regulate coalescence whilst controlling interfacial tension and internal drop viscosity (and
hence effective particle deformability) is key in this underlying model.

The lB scheme described in this paper should be of considerable use in modelling the
microcirculation. As a next step, with a simple pipe geometry, our lB model might be
used quantitatively to investigate the ‘phase transitions’ and variations in viscosity associated
with haematocrit. In this challenging application one would need, for example, explicitly to
calibrate parametrization for the different fluids (to represent red, white cells, platelets, etc).
However, we believe that the results presented here make the necessary investment of effort
worthwhile.
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